

TIRFm

(Total Internal Reflectance Fluorescence Microscopy)

New at the OCS Microscopy Core

Lunch Talk March 2015

Michael Cammer

Nikon Eclipse Ti microscope

History

2010: Purchased with lasers for TIRF by Dr. Michael Dustin

2014: Transferred to Microscopy Core and upgraded by OCS for epifluorescence (LED light sources, new computer, additional lenses & sCMOS camera)

- Apo TIRF 100X/1.49 01 200.13-0.20 WO 012
- Nikon Eclipse Ti inverted microscope
- Environment chamber with heat unit
- Motorized stage for tiling and multiple fields imaging
- Autofocus stability
- NIS-Elements software

<u>Lens Type</u>	<u>N.A.</u>
Plan Fluor 40x DIC M N2	0.75
Apo TIRF 100x Oil DIC N2	1.49
Plan Fluor 10x Ph1 DLL	0.30
Plan Apo 20x DIC M N2	0.75
S Plan Fluor ELWD 40x Ph2 ADM	0.60
Plan Apo λ 60x Oil Ph3 DM	1.40

Standard Epifluorescence with Andor Zyla sCMOS Camera

Excitation wavelengths

<u>nm</u>

395

440

508

555

640

550 575 **Dichroics**

CFP/YFP/Dsred
Dapi/FITC/
TxRed/Cy5

Emission wavelengths

nm

435/26

475/20

515/30

540/21

595/40

632/60

700/75

TIRF with Andor DU897 Camera

Excitation Lasers 405 nm 488 nm 561 nm 641 nm Chroma 97327 C-TIRF zet405/488/561/635x quad-band cleanup/excitation filter zt405/488/561/640rpc Filters in external emission wheel:

ET450/40M ET525/50M ET600/50M ET700/75M

Before we discuss TIRF, highlights of the Nikon microscope in standard modes.

Large Tissue Scanning

Multiple Field Timelapse

Multiple Field Timelapse

Multiple Colors _OX _UX -|0|×| Multiple fields Timelapse Find a lot of events for statistics or find rare events

Multiple Field Timelapse

Live Cell Imaging Techniques Workshop

Friday, April 24th, 2015

1:00 p.m.—2:00 p.m.

Seminar @Skirball 2nd floor, Conference Room
2:00 p.m.—5:00 p.m.

Hands-On Demonstrations (Microscopy Core)

The CellASIC™ ONIX Microfluidic Platform. The control system is connected to the microfluidic plate via a low-profile manifold, which enables setup on any inverted microscope.

The CellASIC™ ONIX Microfluidic Plates deliver unprecedented control for live cell imaging.

- ❖ The microfluidic platform is designed to enable perfusion based microenvironment control for long term, high quality live cell microscopy.
- ❖ Continuous perfusion of culture medium to the cells recreates the physiologic mass transport condition for optimized cell health, giving a suitable growth environment for long-term experiments from 4-72 hours on the microscope stage.
- ❖ The system enables single or multi-cell tracking while automated perfusion controls washout, drug changes, and dynamic solution profiles.
- ❖ Temperature and CO₂ control is maintained by an on-chip microincubator.

TIRF (Total Internal Reflectance Fluorescence)

Standard Epifluorescence

TIRF

Higher contrast of molecules at substrate

50 to 200 nm Z Axis "Resolution"

- Technically, the spatial resolution in the Z axis isn't improved.
- The energy activating the fluorescent molecules is limited to a depth of 200 nm maximum.
- Effectively, the result is imaging molecules only within 50 to 200 nm of the substrate, or effective resolution of 50 – 200 nm in the Z axis.

How do we do this?

Total Internal Reflectance **Fluorescence Microscopy** is based on an evanescent field that is produced at the critical angle between two interfaces of different refractive indexes.

Approaching Critical Angle

How It Works

Internal Reflection

Chromatic Aberration

Different colors of light focus on different focal planes. This is a problem in microscopy where you want to take pictures of violet through near infra-red fluorescent emitters. When you focus on the green fluorescence, with all microscopes to some extent the violet and far-red images are out of focus.

http://microscopynotes.com/coverslips/index.html

Example #1.5 Coverslip Bottom Chambers

Sequential Colors

To go faster, need to use fewer imaging modes and fewer colors.

Easy to sequence different conditions; run fast single color then slower multiple channels.

Time Intervals Seconds 14.95 15.11 14.99 14.91 15.03 15.06 14.95 15.00 14.98 15.05

14.91

15.02

15 NN

Example Quantification: Radial Intensity Plots Show Locations of Molecules Per Cell Compartments

En face view of the synapse with cSMAC, pSMAC and dSMAC and en face view of a kinapse.

Primary Cilia

Primary cilium in fibroblasts (marker acetylated α tubulin)

Primary Cilia

Primary cilium in fibroblasts (marker acetylated α tubulin)

Not At Bottom At Bottom TIRF epi epi TIRF Allows for high contrast imaging of MT receptors, etc.) in intact primary cilia or associated proteins (motors, Models: sticking out on top:\ coverslip sticking out on bottom: unpublished Linda Schneider coverslip

& Michael Cammer - 2006

From standard epifluorescence to TIRF in an f-actin *in vitro* assay

Anchor points closer to substrate are brighter

F-actin YFP

Donor/FRET

TIRF FRET

Active WASp is localized in podosomes and its activity is required for podosome maintenance. WASp is active in podosomes. RAW/LR5 cells transfected with a WASp biosensor, fixed and stained with Alexa Fluor 568-phalloidin and imaged by TIRF microscopy.

Dovas A, Gevrey JC, Grossi A, Park H, Abou-Kheir W, Cox D. Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages. *J Cell Sci.* 2009 Nov 1;122(Pt 21):3873-82. doi: 10.1242/jcs.051755.

Hi Lo may be useful for thick samples

Early C. elegans embryo imaged with near-TIRF illumination to overcome the problem of the 200nm-thick eggshell that makes it difficult to use the true TIRF optics. The molecule here is Par-6-GFP a polarity protein. This method allows measuring the exchange rate and mobility of the single molecules at the membrane.

Yuliya Zilberman in Nance lab

Correlative TIRF and TEM

3 μm

g. T cell with centrally accumulated GAG-GFP resuming motility and releasing GAG-GFP-containing microvesicles. h. Higher magnification image of boxed region in g. showing internal juxta-membrane density in GAG-containing microvesicles. Arrowhead, plasma membrane.

500 nm

Modified from Choudhuri K, Llodrá J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. *Nature*. 2014 Mar 6;507(7490):118-23. doi: 10.1038/nature12951.

Official Website:

http://www.med.nyu.edu/ocs/microscopy

MC's Personal notes site:

http://microscopynotes.com/

This talk without movies at:

http://microscopynotes.com/tirftalk.pdf

(draft as of 20150330_1344)

Michael Cammer

